력사를 찾아서

환기9217해,신시배달5917해 단기 4353해,서기 2020해, 대한민국 101해(나뉨 72해),

Genetic characteristics and migration history of a bronze culture population in the West Liao-River valley revealed by ancient DNA 고대 DNA에 의해 밝혀진 West Liao-River 계곡의 청동기 문화 집단의 유전적 특성과 이동 이력

댓글 0

배달국시대/유전학

2018. 8. 17.

Original Article | Published: 22 September 2011

Genetic characteristics and migration history of a bronze culture population in the West Liao-River valley revealed by ancient DNA 

고대 DNA에 의해 밝혀진 West Liao-River 계곡의 청동기 문화 집단의 유전적 특성과 이동 이력

 

 

Journal of Human Genetics volume56, pages815822 (2011) | Download Citation 

 

번역은 구글번역임.

 

Abstract

In order to study the genetic characteristics of the Lower Xiajiadian culture (LXC) population, a main bronze culture branch in northern China dated 4500–3500 years ago, two uniparentally inherited markers, mitochondrial DNA and Y-chromosome single-nucleotide polymorphisms (Y-SNPs), were analyzed on 14 human remains excavated from the Dadianzi site. The 14 sequences, which contained 13 haplotypes, were assigned to 9 haplogroups, and Y-SNP typing of 5 male individuals assigned them to haplogroups N (M231) and O3 (M122). The results indicate that the LXC population mainly included people carrying haplogroups from northern Asia who had lived in this region since the Neolithic period, as well as genetic evidence of immigration from the Central Plain. Later in the Bronze Age, part of the population migrated to the south away from a cooler climate, which ultimately influenced the gene pool in the Central Plain. Thus, climate change is an important factor, which drove the population migration during the Bronze Age in northern China. Based on these results, the local genetic continuity did not seem to be affected by outward migration, although more data are needed especially from other ancient populations to determine the influence of return migration on genetic continuity.

 

Lower Xiajiadian culture (LXC) 인구의 유전 적 특징을 연구하기 위해 중국 북부의 주요 청동 문화 지 (branch)는 4500-3500 년 전으로, 두 개의 상장받지 않은 마커, mitochondrial DNA와 Y-chromosome single-nucleotide polymorphisms (Y- SNP)는 Dadianzi 현장에서 발굴 된 14 개의 인간 유적에 대해 분석되었습니다. 13 개의 일배 체형을 포함한 14 개의 염기 서열은 9 개의 하 플로 그룹에 할당되었고, 5 명의 남성 개체는 Y (M231) 및 O3 (M122) 하 플로 그룹으로 할당되었다. 연구 결과에 따르면 LXC 인구는 주로 신석기 시대 이후이 지역에 살았던 북부 아시아의 반등 집단과 중부 평야에서 이민 한 유전 적 증거를 가진 사람들을 포함했다. 나중에 청동기 시대에, 인구의 일부는 더 시원한 기후에서 남쪽으로 이주했고, 이는 궁극적으로 중앙 평원의 유전자 풀에 영향을 미쳤다. 따라서 기후 변화는 중국 북부의 청동기 시대에 인구 이동을 일으키는 중요한 요소입니다. 이러한 결과를 바탕으로, 유전 적 연속성에 대한 복귀 이주의 영향을 결정하기 위해 다른 고대 인구 집단에서 특히 더 많은 자료가 필요하지만, 국부적 인 유전 적 연속성은 외부 이동에 의해 영향을받지 않는 것으로 보인다.

Introduction

The Lower Xiajiadian culture (LXC) was a main branch of the bronze culture of northern China dating to 4500–3500 years ago and found mainly in the West Liao-River valley (Figure 1). It was a flourishing civilization during a period characterized by a complex social structure, highly developed agricultural economy, distinctive painted pottery and elaborate artifacts.1 Its ethnic composition and the relationship with the Central Plain, an important site for Chinese civilization, has been the focus of multi-disciplinary research. The LXC was replaced abruptly by a totally different culture, the Upper Xiajiadian culture (UXC) between 2900–2700aBP.2 The UXC absorbed and inherited many of the strong characteristics of the Bronze Age cultures that developed in the steppes of northern China. As no archaeological sites with transitional links or intermediate forms have been found, the cause for the transition from farming back to a pasturing lifestyle in the prehistoric West Liao-River valley has been debated for more than a century. Of particular interest is to know whether population replacement or gene flow accompanied the cultural transition from the LXC to the UXC.

 

Lower Xiajiadian 문화 (LXC)는 4500-3500 년 전의 북부 중국의 청동 문화의 주요 지점이었으며 주로 서쪽 Liao-River 계곡에서 발견되었습니다 ( 그림 1 ). 그것은 복잡한 사회 구조, 고도로 발달 된 농업 경제, 특유의 칠한 도자기 및 정교한 유물로 특징 지어지는 기간 동안 번영하는 문명이었습니다. 1 민족 구성과 중국 문명의 중요한 장소 인 센트럴 플레인 (Centre Plain)과의 관계는 여러 분야의 연구의 초점이었습니다. LXC는 2900-2700aBP 사이의 Upper Xiajiadian culture (UXC)와 완전히 다른 문화로 갑자기 대체되었습니다. 2UXC는 중국 북부 대초원에서 발전한 청동기 시대 문화의 강점을 흡수하고 계승했습니다. 과도기적 연결이나 중간 형태를 가진 고고 학적 유적지가 발견되지 않아 선사 시대 서쪽 리아 리버 계곡에서 농경지에서 목장 생활 양식으로 전환하는 원인은 1 세기 이상 논의되어 왔습니다. 특히 인구 증가 또는 유전자 이동이 LXC에서 UXC 로의 문화 전이를 수반했는지 여부를 파악하는 것이 중요합니다.

 

Figure 1

Geographic location of the Dadianzi site. A full color version of this figure is available at the Journal of Human Genetics journal online.

Full size image

 

 

The Dadianzi site, located in Chifeng, Inner Mongolian Autonomous Region of China was dated back about 3600 years by 14C testing. Cultural relics such as painted pottery jars, bronze wares and burial practices presented a typical Lower Xiajiadian cultural identity.3 As a rare well-preserved burial ground for the LXC, the Dadianzi site provides us with a valuable opportunity to solve the mysteries of the LXC using modern molecular tools.

 

츠펑에 위치한 Dadianzi 사이트는, 중국의 내몽골 자치구는 약 3,600년 다시 날짜가 기입 된 14 C 테스트. 도기 항아리, 청동 그릇 및 매장 관습과 같은 문화 유물은 전형적인 Xiajiadian 문화 정체성을 나타 냈습니다. 3 희귀하고 잘 보존 된 LXC 매장지 인 Dadianzi 사이트는 최신 분자 도구를 사용하여 LXC의 신비를 풀 수있는 귀중한 기회를 제공합니다.

 

In this study, two uniparentally inherited markers, mitochondrial DNA (mtDNA) and Y-chromosome single-nucleotide polymorphisms (Y-SNPs), were analyzed on 14 human remains excavated from the Dadianzi site in order to study the genetic characteristics of the LXC population. By comparing the ancient Dadianzi DNA with that of ancient and extant populations in the West Liao-River valley, the Central Plain and other surrounding regions in Asia, we revealed the migration history and evaluated the genetic continuity in this area. This information will contribute to the understanding of chief factor(s) involved in the formation and transition of culture in this area.

 

이 연구에서는 LXC 개체군의 유전 적 특성을 연구하기 위해 Dadianzi 사이트에서 발굴 된 14 개의 인간 유적에 대해 미토콘드리아 DNA (mtDNA)와 Y 염색체 단일 염기 다형성 (Y-SNP)의 두 가지 상속 상속 마커를 분석했습니다 . 웨스트 리아 리버 밸리, 센트럴 플레인 (Central Plain) 및 아시아 주변 지역의 고대 및 현존 인구와 고대 디아디아지 (Dadianzi) DNA를 비교함으로써, 우리는 이동 이력을 밝히고이 지역의 유전 적 연속성을 평가했다. 이 정보는이 분야의 문화 형성 및 전환과 관련된 주요 요인을 이해하는 데 도움이됩니다.

Materials and methods

Samples

The Dadianzi site (42°18′ N, and 120°36′ E) is located in northeast China where the annual average temperature is 4 °C6 °C. The cold and dry climate is favourable for DNA conservation. Well-preserved molars were collected from 14 human remains for DNA analysis to minimize the possibility of modern DNA contamination. The archaeological and anthropological data of the ancient individuals are shown in Table 1.

 

Dadianzi 사이트 (42 ° 18 'N 및 120 ° 36'E)는 연평균 기온이 4 ° C ~ 6 ° C 인 중국 북동부에 위치하고 있습니다 추위와 건조한 기후는 DNA 보존에 유리합니다. 현대의 DNA 오염의 가능성을 최소화하기 위해 DNA 분석을 위해 14 개의 인간 유물에서 잘 보존 된 대구치를 수집했습니다. 고대 개인의 고고학 및 인류 학적 자료는 표 1 에 나와있다 .

 

Table 1: Sampling information from the Dadianzi site

Full size table

Contamination precautions

In this study, standard contamination precautions were followed as closely as possible to ensure the accuracy and reliability of the results.4,5 Isolated rooms were used for different experimental steps (three rooms for sample preparation, DNA extraction and PCR amplification). Pre-PCR and post-PCR procedures were thus carried out in separated areas, and strict cleaning procedures were performed by regular treatment with 10% liquid sodium hypochlorite and UV light (254 nm). Full-body protective clothing, facemasks and gloves (frequently changed) were used during all handling processes. All consumables, although purchased as DNA-free, were sterilized at 121 °C for 15 min, and reagents were further UV irradiated before use for at least 20 min. Extraction and amplification blank samples were included in every PCR assay as negative controls. To identify potential laboratory-based contamination, the mitochondrial hypervariable I sequences of all researchers were obtained and compared with those of the samples. In addition, only female researchers were involved in the pre-PCR procedures in the Y-SNP study, preventing possible contamination from modern Y-chromosome DNA.

Ancient DNA extraction, amplification and purification

Teeth samples were immersed in 5% liquid sodium hypochlorite for 20 min, and washed using ultra-pure water and 100% alcohol. Each side of the tooth was then exposed to UV light for 30 min. The teeth were ground to fine powder in liquid nitrogen in a 6750 Freezer Mill (Spex SamplePrep, Metuchen, NJ, USA) and stored at −20 °C. Teeth powders (0.5 g) were incubated in 3 ml solution containing 0.45 Methylenediaminetetraacetic acid, 0.5% SDS and 0.7 mg ml−1 Proteinase K at 50 °C in a shaker (220 r.p.m. min−1) for 24 h. DNA was extracted using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol.

Two sets of overlapping primers were used to amplify the mtDNA HVS-I between positions 16 035–16 409 (Table 2). PCR amplification was carried out in 25 μl of a reaction mixture containing 2 μl extract, 1.5 × reaction buffer (Fermentas, Burlington, Canada), 1 U of Taq polymerase (Fermentas), 2.5 mM MgCl2 (Fermentas), 0.2 mM dNTP Mix (Promega, Madison, WI, USA), 0.8 mg ml−1 BSA (Takara, Da Lian, China) and 0.2 μMof each primer (Sangon, Shanghai, China). PCR conditions were: initial denaturizing at 94 °C for 4 min, followed by 33 cycles at 94 °C for 40 s, 52 °C54 °C for 45 s and 72 °C for 40 s, with a final extension of 10 min at 72 °C and 4 °C for storage. Amplification products were purified using the QIAquick Gel Extraction Kit (Qiagen)

Table 2: All primers used in this study

Full size table

mtDNA sequencing and SNP typing

Amplification products were sequenced directly using the ABI 310 Terminator Sequencing Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's instructions. Sequence reaction products were analyzed on an ABI PRISM 310 automated DNA sequencer.

To validate the mtDNA haplogroup, key SNPs of the mitochondrial coding regions were also typed. Seven sets of primers (for haplogroups M/N, D, D4, F, M7, M9 and Z) were used to amplify the mtDNA coding sequences by amplified product-length polymorphisms analysis.6, 7Haplogroups A, G and M10 were typed by sequencing. The PCR reaction conditions were the same as those for the mitochondrial HVS-I amplification.

Sex identification and Y-chromosome SNP typing

The amelogenin fragment was amplified using primers shown in Table 2for sex determination in all samples, and male samples were chosen for further analysis. We screened all male samples with four bi-allelic markers (M89-F, M9-K, M214-NO and M45-P) that define the major branches on the Eurasian haplogroup tree.8, 9 Subsequent analysis was restricted to markers (M231-N, Tat-N1c, M175-O, M119-O1, M95-O2, M122-O3, M242-Q and M173-R) on the appropriate sub-branch of the haplogroup tree.8, 10 The PCR reaction conditions were the same as those for the mitochondrial HVS-I amplification, but the length of the PCR products was all around 100–130 bp. All primers are listed in Table 2.

Cloning of PCR products

The mtDNA HVS-I products were cloned using the pGEM-T Easy Vector System I (Promega) according to the manufacturer's instructions. The remains of eight individuals were randomly selected on which to perform cloning analysis. Six to ten clones from two independent amplifications were selected for automated DNA sequencing, using vector M13 primers. As damaged DNA or jumping PCR would not result in mistakes in the determination of Y-SNP alleles, we did not clone the PCR products of the Y-SNP.10

Data analysis

Sequence alignments were analyzed using CLUSTAL X1.83 (http://www.clustal.org/download/1.X/ftp-igbmc.u-strasbg.fr/pub/ClustalX/). Comparison of DNA sequence homology was performed with the Blast program from the National Center for Biotechnology Information. An analysis of the molecular variance was performed on the 393 bp HVS-I sequences (np spanning 16 017–16 409), using ARLEQUIN 3.11.11 Fst values were considered significantly different with P-values under the threshold of 0.05. All results obtained for the comparison between the Dadianzi population and each population of the database were graphically plotted on a map with Surfer v.8.0 (Golden Software, Golden, CO, USA), using the location of each population given in the corresponding study.

Results and Discussion

Sequence authentication

Strict procedures and systematic controls were instituted to minimize the potential for exogenous DNA contamination. All the PCR controls as well as extraction controls yielded negative results. At least two extractions and two amplifications of different extractions were carried out on different teeth for each sample to assess the reproducibility of the results. All the sequences of the ancient individuals were confirmed to be different from those of the laboratory researchers (Supplementary Table S1). Correspondence of haplogroup inference was found between coding and control region data, and the sequencing of the clones further confirmed the results obtained by direct sequencing (Supplementary Table S2).

An inverse correlation between the size of the PCR amplicons and the amplification efficiency for the samples (138 bp>209 bp >235 bp >363 bp) was found in this study. Molecular sex identification results were in accordance with morphological sex assignments (Table 1) providing confidence for the presence of endogenous nuclear DNA. In order to validate the results generated in our laboratory, human remains from two samples (S9 and S12) were sent to the ancient DNA laboratory of Fudan University for further analysis, and identical results were obtained. All of these independent safeguards and checks provide confidence that the data obtained with these ancient samples are authentic.

mtDNA and Y-SNP analysis

Reproducible sequences were obtained from all 14 individual remains. The 393 bp fragments of the mtDNA HVS-I were compared with the revised Cambridge Reference Sequence.12 There was a total of 23 polymorphic sites, including 22 transitions and 1 transversion (16 232 C → A). Based on the HVS-I and coding region data combined with the eastern Eurasian mtDNA classification tree,7, 13, 14 the 14 sequences, which contained 13 haplotypes, were assigned to 9 haplogroups (Table 3). The dominant haplogroup in the Dadianzi people was D4 shared by five individuals who were associated with four different haplotypes. The other haplotype belonging to haplogroup D in the Dadianzi population was designated as D5 by the mutation at site 16 189 (T to C). The haplogroup M7c included two haplotypes, which were shared by two individuals in ancient Dadianzi people. The other haplogroups, including A4, F1b, G1a, M9a, M10 and M8z, were each present in one individual.

 

재현성있는 서열은 14 개의 모든 유적으로부터 얻어졌다. mtDNA HVS-I의 393 bp 단편을 수정 된 Cambridge Reference Sequence와 비교했습니다. 12전환 및 1 전환 (16 232 C → A)을 포함하여 총 23 개의 다형성 사이트가있었습니다. HVS-I 및 동부 유라시아 미토콘드리아 분류 트리 조합 코딩 영역 데이터에 기초하여, 7 , 13 , 14 개 13 개 일배 체형을 포함 서열 14, 9 하 플로 (할당 된 표 3). Dadianzi 사람들의 지배적 인 haplogroup은 4 개의 다른 haplotype과 연관된 5 명의 개인에 의해 공유 된 D4였다. Dadianzi 개체군의 haplogroup D에 속한 다른 일배 체형은 16 189 (T에서 C)까지의 돌연변이에 의해 D5로 지정되었다. haplogroup M7c에는 고대 Dadianzi 사람들의 두 명의 개인이 공유 한 두 개의 haplotype이 포함되어있다. A4, F1b, G1a, M9a, M10 및 M8z를 포함한 다른 haplogroups는 한 개인에게 각각 존재했다.

 

Table 3: Nucleotide changes of mtDNA and Y-SNP in the 14 Dadianzi specimens

Full size table

Seven male samples were chosen for Y chromosome SNPs among the 14 individuals. Three samples (S1, S2 and S13) exhibited the mutations M89C → T, M9C → G, M214T → C and M231G → A, which were attributed to haplogroup N ( × N1C). Two samples (S8 and S12) exhibited the mutations: M89C → T, M9C → G, M175-5 bp del and M122T → C, belonging to haplogroup O3 (M122). We failed to obtain any product from two samples (S5 and S14) (Table 3).

Genetic characteristics of the LXC population

Due to its particular geographic location, the West Liao-River valley was a contact zone between northern steppe tribes and the Central Plain farming population. The formation and development of the LXC population was likely a complex process affected by admixture of ethnically different people. An archaeological study showed that the shapes and decorative patterns of ancient painted potteries were influenced by the Erlitou culture, which existed just before the LXC time in the Central Plain.15 Moreover, the climate of the West Liao-River valley was warmer at the beginning of the Early Bronze Age and was suitable for agricultural development, which may be one of the driving forces for the northward migration of the Central Plains farming population.

 

그것의 특정한 지리적 인 위치 때문에, 서쪽 Liao 강 골짜기는 북부 대초원 부족과 중부 평야 농업 인구 사이 접촉 접촉 지역이었다. LXC 인구의 형성과 개발은 인종적으로 다른 사람들의 혼합에 영향을받는 복잡한 과정이었을 가능성이 큽니다. 고고학 연구에 따르면 고대 도자기의 모양과 장식 패턴은 중앙 평원의 LXC 시대 직전 인 얼리 두 문화의 영향을 받았다고합니다. (15) 또한, 웨스트 리아 - 리버 밸리의 기후는 초기 청동기 시대의 시작 부분에 따뜻한이고 중앙 평야의 농업 인구의 북쪽으로 이동의 원동력 중 하나가 될 수 있습니다 농업 개발에 적합했다.

 

In the present study, mtDNA profiles of the Dadianzi population suggested that they were mainly comprised of northeast Asian predominant haplogroups such as A, D, G and M9a. Some haplogroups widespread in Northern and Eastern Asia such as M7c, F1b and M8 were also detected (Table 4). In China, there is a distinct north–south geographic genetic cline for maternal lineages.16 The Central Plain, as the name suggests, is located in the middle of China and hence possesses both northern and southern dominant haplogroups at medium frequencies, except for haplogroup M10 where ancient and extant Central Plain population show that M10 has the highest frequency in this area (Table 4). Haplogroup M10 also occurs at a high frequency in the West Liao-River valley in modern times (5.9%) as well as in the ancient population in the present study (7.2%), but it is rarely found in other places of China. It is worth noting that M10 appeared at an extremely high frequency (28.0%) in the ancient Taoshi population, which existed in the Central Plain 4500 years ago.17 Therefore, we deduce that the ancient population living in the West Liao-River valley experienced immigration from the Central Plain increasing genetic diversity of populations in this region.

 

현재 연구에서, 다이 디안 지 인구의 mtDNA 프로파일은 주로 A, D, G 및 M9a와 같은 동북 아시아 우세한 하 플로그 그룹으로 구성되었다고 제안했다. M7c, F1b 및 M8과 같은 북부 및 동부 아시아에 널리 퍼져있는 일부 haplogroups도 발견되었다 ( 표 4 ). 중국에는 모성 계통을위한 남북 지리적 인 유전자 클링이 존재한다. 16 중앙 평야는 이름에서 알 수 있듯이, 중국의 중간에 위치하고 있으며, 따라서 하 플로 그룹 M10를 제외하고, 중간 주파수에서 북부와 남부 지배적 인 하 플로 그룹을 모두 가지고 어디 고대와 M10이에서 가장 높은 주파수를 갖는 현존하는 중앙 일반 인구 쇼 면적 ( 표 4). Haplogroup M10은 또한 현재 연구 (7.2 %)의 고대 인구뿐만 아니라 근대 (5.9 %)의 West Liao-River 계곡에서 높은 빈도로 발생하지만, 중국의 다른 지역에서는 거의 발견되지 않습니다. 4500 년 전에 Central Plain에 있었던 고대 Taoshi 인구에서 M10이 매우 높은 빈도 (28.0 %)로 나타났습니다. 17 따라서 우리는 고대의 인구가이 지역에서 인구의 유전 적 다양성을 증가 중앙 평야에서 서쪽 리아 - 강 계곡 경험 이민에 살고 있음을 추론.

 

Table 4: Haplogroup frequency distribution in the Dadianzi population and the 17 Eurasian reference populations

Full size table

 

Determinations of the Y haplogroups gave further support to the conclusion above. The Dadianzi population contains two Y haplogroups, N (M231) and O3 (M122). Haplogroup N has a wide geographic distribution throughout northern Eurasia and is absent or only occasionally observed in more southerly areas.18, 19 By contrast, the haplogroup O3 (M122) is dominant among populations of East Asian and Southeast Asian populations, especially in the Chinese Han population with an average frequency of 52.3%.20 Y-SNPs analysis of prehistoric people (6400–3100 BP) along the Yangtze River showed that 65% of ancient individuals belonged to the haplogroup O3.10 However, studies on the ancient Xiongnu, Siberian and Mongolian populations indicated that the dominant haplogroups were C, N, Q and R, while haplogroup O3 was found at quite a low frequency.19, 21, 22 As with the maternal genetic data, these Y chromosome results indicate that, aside from the Northern lineage (haplogroup N), the Dadianzi population likely received the haplogroup O3 from immigrations from the south, most likely from the Central Plain. Intriguingly, there was an individual (S12) in the Dadianzi population who possessed both the northern maternal lineage (D4) and southern paternal lineage (O3-M122), suggesting that there was genetic admixture from the Central Plain during the Dadianzi time.

 

Y haplogroups의 결정은 위의 결론을 뒷받침 해 주었다. Dadianzi 개체군은 두 개의 Y haplogroup, N (M231)과 O3 (M122)를 포함한다. Haplogroup N은 유라시아 북부 전역에 걸쳐 넓은 지형 분포를 가지고 있으며 더 남쪽 지역에서는 결석 또는 때때로 관찰됩니다. 18 , 19 대조적으로는 하 플로 그룹 O3 (M122)는, 특히 52.3 %의 평균 주파수를 가진 한 중국 인구 동아시아의 인구 및 동남아시아 인구 중에서 지배적이다. 양쯔강을 따라 선사 시대 사람들 (6400-3100 BP)에 대한 20 명의 Y-SNP 분석에 따르면 고대 개인의 65 %가 haplogroup O3에 속해 있었다. 10그러나 Xiongnu, Siberian, Mongolian의 고대 인구에 대한 연구에서 지배적 인 haplogroup은 C, N, Q, R 인 반면 haplogroup O3는 낮은 빈도로 발견되었다. 19 , 21 , 22 모계 유전 데이터와 마찬가지로,이 Y 염색체 결과 옆 노던 혈통 (하 플로 그룹 N)로부터, Dadianzi 인구 가능성 중앙 무지에서 대부분 남쪽으로부터 출입국에서 하 플로 그룹 O3을받은 것을 나타낸다. 흥미롭게도 Dadianzi 인구 중 Dadianzi시기에 Central Plain으로부터의 유전자 혼합이 있었음을 암시하는 북부 산모 혈통 (D4)과 남부 부계 계통 (O3-M122)을 모두 보유한 개체 (S12)가있었습니다.

Genetic continuity in the West Liao-River valley from the Bronze Age

As the archaeological culture was replaced by the nomadic UXC and no transitional types have been found, there is much speculation about what happened to the LXC people. Two hypotheses have been proposed to explain the whereabouts of the LXC people. (1) Between 2900–2700aBP, based on pollen analysis as a record of climate change,23temperatures suddenly dropped resulting in a cold climate. Thus, the people of the LXC, who were engaged in agriculture, were forced to migrate south and were replaced by nomadic populations from the northern steppe. (2) The ancient people learned to change their method of subsistence from farming back to a pasture-based lifestyle and adapt to the colder climate. Culture exchange with nomadic people to the north was responsible for the transition back to pastoralism. To investigate whether the LXC ancestral genetic components extended to the extant population of the West Liao-River valley, we compared all the haplotypes found in the Dadianzi population with the ancient and extant populations in Liaoxi and Asia. Figure 2 illustrates the current and past distributions of all the mtDNA haplotypes of our ancient LXC samples. The distribution of ancient DDZ mtDNA haplotypes were mainly concentrated in the West Liao-River valley but were also distributed widely in the surrounding areas, especially in the Central Plain. For the UXC, only five individuals belonged to the A, D, M8 and M*haplogroups, which were also found in the LXC population, but we found no sharing of haplotypes with the Dadianzi people.24 

 

고고학 문화가 유목민 UXC로 대체되고 과도기 유형이 발견되지 않았기 때문에 LXC 사람들에게 일어난 일에 대해 많은 추측이있었습니다. LXC 사람들의 소재를 설명하기위한 두 가지 가설이 제시되었습니다. (1) 2900-2700aBP 사이, 기후 변화의 기록으로서의 꽃가루 분석에 기초하여, 23온도가 갑자기 낮아져 추운 날씨가 발생했습니다. 따라서 농업에 종사했던 LXC의 사람들은 남쪽으로 이주해야했고 북부 대초원의 유목민으로 대체되었습니다. (2) 고대 사람들은 자신의 생계 수단을 농업에서 목초지에 기반한 생활 방식으로 바꾸고 추운 기후에 적응하는 법을 배웠다. 북부의 유목 민족과의 문화 교류는 목축주의로의 전환에 책임이있다. LXC 조상 유전자 구성 요소가 서쪽 Liao-River 계곡의 현존 인구로까지 확장되었는지 여부를 조사하기 위해 Dadianzi 인구에서 발견 된 모든 haplotype을 Liaoxi 및 아시아의 고대 및 현존 인구와 비교했다. 그림 2고대 LXC 샘플의 모든 mtDNA 일배 체형의 현재 및 과거 분포를 보여줍니다. 고대 DDZ mtDNA 일배 체형의 분포는 서쪽 랴오 강 (West Liao-River) 계곡에 주로 집중되었지만 주변 지역, 특히 중부 평야에 널리 분포되어있다. UXC의 경우 LXC 인구에서 발견 된 A, D, M8 및 M * haplogroups에 속한 사람은 5 명 뿐이지 만 Dadianzi 사람들과는 haplotypes를 공유하지 않았다. 24

 

Figure 2

Geographic distribution of the populations shared by each DDZ haplotype. Every dot represents an extant individual, and each triangle represents an ancient individual. A full color version of this figure is available at the Journal of Human Genetics journal online.

Full size image

 

The population pairwise Fst comparison of maternal DNA showed that populations inhabiting the Central Plain presented the lowest genetic divergence, compared with other people in Northeast Asia (Figure 3), such as the Korean and Mongolian populations. A similar close relationship with the Dadianzi population also existed in the Buryats.19High divergences were identified in the south and southeastern areas of China, such as Guangdong and Guangxi, and in minor ethnic populations as well as in the western regions such as Jiangxi and Tibet.

 

모계 DNA의 F와 한 쌍의 비교에 따르면 중앙 평야에 거주하는 인구 는 한국과 몽골 인과 같은 동북 아시아의 다른 사람들과 비교할 때 가장 낮은 유전자 발산을 보였다 ( 그림 3 ). Dadianzi 인구와 유사한 가까운 관계는 또한 Buryats에서 존재했다. 19 고 이견은 광동과 광시, 중국의 남부와 남동부 지역과 작은 소수 민족 인구에서뿐만 아니라 장시와 티베트 등 서부 지역에서 확인되었다.

 

Figure 3

Map of Fst values obtained from the pairwise comparisons of the DDZ maternal lineages with those of ancient and extant populations in surrounding areas of Asia. The dark colour scale represents the Fst values calculated between the mtDNA data of the DDZ population and the populations of interest from the geographic location, which are represented by numbers in the map. 1: Dadianzi (this study); 2: Gansu; 3: Dalian; 4: Chifeng; 5: Xining; 6: Xian; 7: Hefei; 8: Changding; 9: Tianlin; 10: Changsha; 11: Nanjing; 12: Nanchang; 13: Shanghai; 14: Weicheng; 15: Huizhe; 16: Hangzhou;27 17: Fengcheng; 18: Qingdao; 19: Uraqi; 20: Zhanjiang; 21: Wuhan; 22: Kunming;28 23: Taian;29 24: Oroqen; 25: Ewenki;29 26: Mongolian; 27: Buryat; 28: Yakut; 29: Khamnigan; 30: Korean; 31: Tuvinia; 32: Altaian-Kizhi; 33: Shor; 34: Telenghit; 35: Khakassian; 36: Teleut; 37: Evenki;19 38: Ulchi; 39: Udegey; 40: Negidel;30 41: Taiyuan;13 42: Guangzhou;13 43: Henan; 44: Hebei.31 A full color version of this figure is available at the Journal of Human Genetics journal online.

Full size image

 

Combining the genetic characteristics and Fst comparisons of ancient and extant populations in the West Liao-River valley, we found no significant difference between the two populations in different historical periods. These findings pointed to the genetic continuity in this area after the early Bronze Age. However, due to the insufficient ancient population data for the UXC and other historic periods in this area, we cannot rule out the possibility that the genetic continuity was generated by returning migrant populations. Nevertheless, the distribution of shared haplotypes and low genetic divergence between the LXC and the Central Plain populations suggested that part of the Dadianzi population migrated to the south, likely due to the cooling climate, and these southwardly migrating LXC people contributed to the gene pool of the Central Plain in the Bronze Age. This viewpoint has been supported by archaeological evidence. Among the Yin Ruins relics of Shang Dynasty, which was built in the Central Plain during 3600–3050aBP, a large proportion of artifacts with northern cultural influences were identified.25 Furthermore, some archaeologists have even maintained that the ancestor tribe of the Shang Dynasty included part of the southward migrating population from the Yan Mountain and West Liao-River valley.26

 

West Liao-River 계곡의 고대 및 현존 인구의 유전 적 특성과 Fst 비교를 결합하여, 우리는 서로 다른 역사적시기에 두 집단간에 유의 한 차이가 없음을 발견했다. 이 발견은 초기 청동기 시대 이후이 지역의 유전 적 연속성을 지적했습니다. 그러나이 지역의 UXC 및 다른 역사적시기에 대한 부족한 고대 인구 자료로 인해 우리는 이민 인구를 돌려줌으로써 유전 적 연속성이 생길 가능성을 배제 할 수 없습니다. 그럼에도 불구하고 공유 된 일배 체형의 분포와 LXC와 중부 평야 인구 사이의 낮은 유전 적 차이는 Dadianzi 인구의 일부가 냉각 기후로 인해 남쪽으로 이주한 것으로 나타 났으며, 이 남쪽으로 이주한 LXC 사람들은 청동기 시대의 중앙 평야의 유전자 풀에 기여했습니다. 이 견해는 고고 학적 증거에 의해 뒷받침되었다. 3600-3050aBP 동안 중앙 평야에 지어진 상 왕조의 유적 유적 중에 북부의 문화적 영향을받은 많은 유물이 확인되었습니다.(25) 또한, 일부 고고학자들은 심지어 상 나라의 조상 지파는 옌산 산맥 서부 리아 - 강 계곡에서 남쪽으로 이주 인구의 일부를 포함한다고 주장했다. 26 

Conclusions

Without major geographic barriers, population movement and cultural exchanges have been continuously occurring in the West Liao-River valley located between the northern steppe and Central Plain. Based on our analysis in this study, the main part of the LXC population of northern China was comprised of people carrying the haplogroup of northern Asians who had lived in this region since the Neolithic period, as well as genetic components due to immigration from the Central Plain. Climate change was a key factor in population migration in this area, as part of this population moved south later in the Bronze Age in response to a cooling climate, ultimately affecting the gene pool in the Central Plain. Although the local genetic continuity did not seem to be affected by people migrating out of the region, more data particularly from the UXC population are needed to determine whether returning migration was relevant to this genetic continuity.

 

주요 지리적 장벽이 없으면 북부 대초원과 중앙 평원 사이에 위치한 서 리아 리버 계곡에서 인구 이동과 문화 교류가 계속되고있다. 이 연구에서 우리의 분석을 토대로, 중국 북부의 LXC 인구의 주요 부분은 신석기 시대 이후이 지역에 살았던 북부 아시아 인의 반수 집단뿐만 아니라 중앙에서 이민으로 인한 유전 적 구성 요소를 포함하는 사람들로 구성되었습니다 평원. 기후 변화는이 지역에서 인구 이동의 주요 요인이었습니다.이 인구의 일부는 냉각 기후에 대한 응답으로 청동기 시대 후반에 남쪽으로 이동하여 궁극적으로 중앙 평원의 유전자 풀에 영향을 미쳤습니다. 지역의 유전 적 연속성은이 지역에서 이주하는 사람들의 영향을받지 않는 것 같지만,

References

  1. 1.

    Tian, G. Form of the social development of the Lower Xiajiadian Culture Period in the West Liaohe River Valley. Archaeology 3, 45–52 (2006).

  2. 2.

    Li, G. & Gao, M. Study on the several questions of Xiajiadian Culture. J Liaoning University(Philosophy and Social Science Edition) 5, 50–56 (1984).

  3. 3.

    Liu, G. Summary of DADIANZI cemetery in Chifeng City, Inner Mongolia. Archaeology 4, 304–309 (1992).

  4. 4.

    Paabo, S., Poinar, H., Serre, D., Viviane, J. D., Hebler, J., Rohland, N. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

  5. 5.

    Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).

  6. 6.

    Umetsu, K., Tanaka, M., Yuasa, I., Adachi, N., Miyoshi, A., Kashimura, S. et al. Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis 26, 91–98 (2005).

  7. 7.

    Yao, Y. G., Kong, Q. P., Wang, C. Y., Zhu, C. L. & Zhang, Y. P.Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in china. Mol. Biol. Evol. 21, 2265–2280 (2004).

  8. 8.

    Karafet, T. M., Mendez, F. L., Meilerman, M. B., Underhill, P. A., Zegura, S. L. & Hammer, M. F. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome. Res. 18, 830–838 (2008).

  9. 9.

    Hammer, M. F. The Y Chromosome Consortium. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome. Res. 12, 339–348 (2002).

  10. 10.

    Li, H., Huang, Y., Mustavich, L. F., Zhang, F, Tan, J. Z., Wang, L. E.et al. Y chromosomes of prehistoric people along the Yangtze River. Hum. Genet. 122, 383–388 (2007).

  11. 11.

    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. online. 1, 47–50 (2005).

  12. 12.

    Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M. & Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

  13. 13.

    Kivisild, T., Tolk, H. V., Parik, J., Yiming, Wang., Papiha, S.S., Bandelt, H. J. et al. The emerging limbs and twigs of the East Asian mtDNA tree. Mol. Biol. Evol. 19, 1737–1751 (2002).

  14. 14.

    Kong, Q. P., Kivisild, T., Tolk, H. V., Parik, J., Wang, Y., Papiha, S. S.et al. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum. Genet. 113, 391–405 (2003).

  15. 15.

    Qin, X. L. Research on the Evolution of the Pottery from the Erlitou to the Erligang Cultures in Southwestern Shanxi. Archaeology 2, 56–72 (2006).

  16. 16.

    Xue, F., Wang, Y., Xu, S., Zhang, F., Wen, B., Wu, X. et al. A spatial analysis of genetic structure of human populations in China reveals distinct difference between maternal and paternal lineages. Eur. J. Hum. Genet. 16, 705–717 (2008).

  17. 17.

    Zhang, Y. J., He, N. & Zhang, F. The racial type of the Middle-Later Phases of the Taosi Culture of Shanxi. Acta. Anthropologica. Sinica28, 363–371 (2009).

  18. 18.

    Karafet, T., Xu, L., Du, R., Wang, W., Feng, S., Wells, R. S. et al. Paternal population history of East Asia: sources, patterns, and microevolutionary processes. Am. J. Hum. Genet. 69, 615–628 (2001).

  19. 19.

    Derenko, M., Malyarchuk, B., Denisova, G, Wozniak, M, Grzybowski, T, Dambueva, I et al. Y-chromosome haplogroup N dispersals from south Siberia to Europe. J. Hum. Genet. 52, 763–770 (2007).

  20. 20.

    Ke, Y., Su, B., Xiao, J., Chen, H., Huang, W., Chen, Z. et al. Y-chromosome haplotype distribution in Han Chinese populations and modern human origin in East Asians. Sci. China. C. Life. Sci.44, 225–232 (2001).

  21. 21.

    Keyser-Tracqui, C., Crubezy, E., Pamzsav, H., Varga, T. & Ludes, B.Population origins in Mongolia: genetic structure analysis of ancient and modern DNA. Am. J. Phys. Anthropol. 131, 272–281 (2006).

  22. 22.

    Kim, K., Brenner, C. H., Mair, V. H., Lee, K. H., Kim, J. H., Gelegdorj, E. et al. A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia. Am. J. Phys. Anthropol.142, 429–440 (2010).

  23. 23.

    Zhu, Y., Chen, F. H., J. W., , Z. & An, C. B. A discussion on the effects of deteriorated environment event on the neolithic culture of China, around 5 000 a BP. Progress Geography 111–121 (2001).

  24. 24.

    Chang, E. Ancient DNA Analysis of Human Remains before Qin Dynasty in the Great Wall Belt in Inner Mongolia (Jilin University, Chang Chun, China, 2008).

  25. 25.

    Derenko, M., Malyarchuk, B., Grzybowski, T., Denisova, G., Dambueva, I., Perkova, M. et al. Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Am. J. Hum. Genet. 81, 1025–1041 (2007).

  26. 26.

    Han, J. Q. The Study on Northern Cultural Factors in the Central Plain's Culture in Period of Xia Dynasty, Yin Dynasty and the Western Zhou Dynasty (Jilin University, Chang Chun, China, 2009).

  27. 27.

    Huang, Z. Y. The Shang culture originated in northern China from Archaeological Discoveries. Northern Culturalrelics 21, 14–19 (1990).

  28. 28.

    Wen, B., Li, H., Lu, D., Song, X., Zhang, F., He, Y. et al. Genetic evidence supports demic diffusion of Han culture. Nature 431, 302–305 (2004).

  29. 29.

    Yao, Y. G., Kong, Q. P., Bandelt, H. J., Kivisild, T. & Zhang, Y. P.Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am. J. Hum. Genet. 70, 635–651 (2002).

  30. 30.

    Yao, Y. G., Kong, Q. P., Man, X. Y., Bandelt, H. J. & Zhang, Y. P.Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol. Biol. Evol. 20, 214–219 (2003).

  31. 31.

    Ji, Y., Zhang, A. M., Jia, X., Zhang, Y. P., Xiao, X., Li, S. et al. Mitochondrial DNA haplogroups M7b1′2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778G → a mutation. Am. J. Hum. Genet. 83, 760–768 (2008).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, grant no: J J0930002. MOE Project of Humanities and Social Science (general project), 10YJC780004. Doctoral Student Interdisciplinary Research Funding, Jilin University, 2011J017 and the Special Fund for Basic Scientific Research of Central Colleges, Jilin University. We are grateful to Institute of Archaeology, Chinese Academy of Social Sciences for providing the human remains. Our special thanks goes to Dr Ripan Singh Malhi for reading and commenting on the manuscript.

Author information

Affiliations

College of Life Science, Jilin University, Changchun, PR China

    • Hongjie Li

    • , Yongbin Zhao

    • , Chunxiang Li

    • , Dayong Si

    •  & Yinqiu Cui

Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, PR China

    • Xin Zhao

    •  & Hui Zhou

Competing interests

The authors declare no conflict of interest.

Corresponding authors

Correspondence to Hui Zhou or Yinqiu Cui.

Supplementary information

Word documents

  1. 1.

Supplementary Table

  1.  

PDF files

  1. 1.

Supplementary Information

  1.  

To obtain permission to re-use content from this article visit RightsLink.

About this article

Publication history

Received

08 February 2011

Revised

04 June 2011

Accepted

28 July 2011

Published

22 September 2011

DOI

https://doi.org/10.1038/jhg.2011.102

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Subjects

Supplementary Information accompanies the paper on Journal of Human Genetics website (http://www.nature.com/jhg)

Article Tools

12Citations

4Altmetric


Article metrics

Sections

Figures

References

 

 

Journal of Human Genetics

ISSN 1435-232X (online)

 

 

출처;https://www.nature.com/articles/jhg2011102